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Abstract

This report provide a description of the Stata programs available to create calibrated weights
from scientific usefile and additional database. After reviewing the key features of the calibration
approach of Deville and Sarndal (1992), we show how to compute calibrated cross-sectional
weights in the first wave of the SHARE panel and calibrated longitudinal weights between the
first two waves. Both types of weights are computed at the individual level for inference to the
target population of individuals and at the household level for inference to the target population
of households.
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1 Introduction

In this user guide, we describe the Stata programs available to create calibrated weights from

scientific usefile and additional database.

After reviewing the key features of the calibration approach introduced by Deville and Sarndal
(1992), we provide a variety of examples on the construction of calibrated weights based on data
from the Survey on Health, Ageing and Retirement in Europe (SHARE). Here, calibration is used to
compensate for both problems of unit nonresponse in the baseline and refreshment samples of each
wave, and problems of attrition in the longitudinal samples of different waves. The cross-sectional
and longitudinal dimensions of the SHARE data, as well as their multi-national nature, allow us to
illustrate the great generality of the calibration approach. More precisely, we show how to compute
calibrated cross-sectional weights in the first wave of the SHARE panel and calibrated longitudinal
weights between the first two waves. Since the basic units of analysis can be either individuals
or households, both types of weights are computed at the individual level for inference to the
target population of individuals and at the household level for inference to the target population
of households. In these examples, calibrated weights allow us to adjust the original design weights
so that weighted survey estimates match the known population totals (the so-called calibration
margins) for a given set of control variables. Calibration margins for the target populations
investigated by SHARE are taken from the regional demographic statistics given by Eurostat. This
external source of data contains population figures and number of deaths by year, NUTS1 regional
area, gender and age. The rationale behind the calibration adjustment is that by ensuring
consistency between the sample and the population distributions of these benchmark variables, the

calibrated weights will also perform well when applied to other study variables of interest.

2 The calibration approach

The calibration approach of Deville and Sérndal (1992) is a well-known and widely used procedure
to adjust the survey weights so that the weighted sum of a vector of benchmark variables over the
sample units equals the corresponding vector of known population totals.

Let U ={1,...,4,..., N} be a finite population of N elements, from which a probability sample



s=A{1,...,4...,n} C U of size n < N is drawn according to the sampling design p(-). Unless
otherwise specified, we shall assume that the inclusion probability 7, = Pr(i € s) and the associated
design weights w; = m; ! are known and strictly positive for all population units. The availability
of the design weights w, allows us to account for the randomness due to probability sampling. For
example, if we wish to estimate the population total ¢, = > icu Y; of a study variable y, then the

Horvitz-Thompson estimator

tAy = Zwi% (1)

€S

is known to be design unbiased, that is Ep(fy) = t,, where E (-) denotes the expectation with

s
respect to the sampling design.

Next, we assume that additional information is available to construct a class of more efficient
estimators. More precisely, let z; = (z;4, ... ,:El-q)—r be a g-vector of auxiliary (categorical) variables
for which we known the corresponding vector of population totals ¢, = >, ;; #; from either the
sampling frame or other external sources such as census data and administrative archives. We
shall refer to the auxiliary variables z; as calibration variables and to the population totals ¢, as
U-level calibration margins. The basic idea of the calibration approach is to determine a new set of

calibrated weights w} that are close as possible (in an average sense with respect to a given distance

function) to the design weights w;, while also satisfying the constraints
Z wix; =t,. (2)

Thus, given a distance function G(w}, w;), calibration consists of minimizing the aggregate distance
Y ics G(wy,w;) with respect to w; subject to the ¢ equality constraints in (2). Following Deville
and Sarndal (1992), we assume that the distance function G(w}, w;) is nonnegative, differentiable
with respect to w}, strictly convex, and such that G(w;,w;) = 0. We also assume that its first
partial derivative with respect to w; can be written as

0G(w}, w;) wy
T owt g\ — />
Wi Wy
where g(-) is continuous and strictly increasing function of w} /w;, such that g(1) = 0 and ¢’(1) = 1.1
Under these regularity conditions, the Lagrangian for this constrained optimization problem leads

to the following set of first-order conditions

g<wi>—ni—0, 1=1,...,n,
w;

! Exact regularity conditions for the specification of the distance function G(w},w;) and its first partial derivative
can be found in Deville and Sérndal (1992, p. 377)




where 1, = x] A is a linear combination of the calibration variables z; and A = (A, ... ,)\q)T is a
g-vector of Lagrangian multipliers associated with the constraints (2). If a solution exists, then it
is unique and is given by

w; = w; F(n;), 1=1,...,n, (3)

where F(u) = g~!(u) denote the inverse function of g(-). Substituting (3) in (2) gives
i€s

so that the vector of Lagrange multipliers can be obtained by minimizing the function

1€8
where £, = Y ics Wir; is the sample estimate of ¢, based on the sampling design weights w;. Give

a solution for X\, we can find the calibrated weights w directly from (3).
A distinguishing feature of this approach is that many traditional re-weighting procedure such
as post-stratification, raking, and generalized linear regression (GREG) can be viewed as special

cases of the calibration estimator

b= wiy,; ()
i€s

for particular choices of the calibration function F'(-) (or, equivalently, the distance function G(-,-))
and the vector of calibration variables x,;. Popular specifications of the distance function G(w}, w;)
and the associated functions g(w]/w,) and F(n;) are listed in Table 1 of Deville and Sarndal
(1992). The chi-quare distance function G(w},w;) = (w} — w;)?/2w;, which leads to the widely
used GREG estimator, has the advantage of ensuring a closed form solution for the calibrated
weights w;. The main drawback is that, depending on the chosen set of calibration variables, the
resulting weights can be negative or extremely large because this distance function is unbounded.
Other specifications of the calibration function allow us to avoid these issues, but a solution for the
calibration problem may not exist and the associated Lagrangian multipliers must be obtained by
some iterative procedure. For example, the distance function G(w},w;) = w} (In(w] /w;) — 1) — w;
and the associated calibration function F'(7;) = exp(n;) still ensure that a solution for the calibrated
weights w; exists. However, this distance function is still subject to the issue of large variability of

the calibrated weights which in turn may affect the precision of the calibration estimator tAZ The

logit specification

G(w],w;;u,l) Yi 1\ w + w—" 1 w



which leads to a calibrated function of the form

l(u—1)+u(l —1)exp(an,)

F K l pr—
(is D) = = = {0 = 1) explan,)

)

with a = ((1 —1)(m — 1))~ (u —1), is usually preferred to the other specifications because it allows
to restrict in advance the range of feasible values for the calibrated weights by suitable choices of
the lower bound [ and the upper bound u. More precisely, if a solution exists, then this distance
function ensures that lw; < w; < uw;.

As argued by Deville and Sérndal (1992), effectiveness of the calibrated weights depends cru-
cially on the correlation between the study variable y and the calibration variables z. In the
extreme case when y can be expressed as a linear combination of x the calibrated estimator f; gives
an exact estimate of ¢, for every realized sample s. They also show that, under suitable regularity
conditions, the calibration estimator f; has desirable asymptotic properties. Moreover, the calibra-
tion estimators resulting from alternative specifications of the distance function are asymptotically
equivalent to the GREG estimator resulting from the chi-squared specification. Thus, in large
samples, calibrated weights are robust to arbitrary choices of the functional form for F'(-).

Unfortunately, this robustness property does not necessarily extend to the more realistic setting
where survey data are affected by nonresponse errors. The calibration approach can be easily
applied to the complete-case data {(y;, z;, w;) : i € s,.}, where s,. C s is a subsample of n,, < n units
who agree to participate into the survey. However, the statistical properties of the nonresponse
calibration estimator can be substantially different from those achieved in the complete response
setting because of the additional randomness due to the nonresponse mechanism. Lundstrém and
Sarndal (1999) give expressions for the bias, the variance and the MSE of the GREG estimator which
is a special case of the nonresponse calibration estimator when F'(-) has a linear specification. A
more general expression for the bias of the nonresponse calibrated estimator can be found in Haziza
and Lesage (2016). These studies suggests that, unlike the complete response setting, alternative
specifications of the calibration function F(-) correspond in practice to different parametric models
for the relationship between the response propensity and the calibration variables. In other words,
assumptions about the nonresponse mechanism are implicit in the specification of the calibration
function F'(-) and the misspecification of this functional form may now lead to biased nonresponse
calibrated estimators. A more explicit approach to deal with nonresponse errors can be based
on two-step procedure which involves a propensity-score adjustment of sampling design weights
in the first step and a standard calibration adjustment of the propensity-score adjusted weights

in the second step (see, e.g., Lundstrom and Sarndal 1999; Sérndal and Lundstrém 2005; Brick



2013; Haziza and Lesage 2016). Notice that, if @, and w;} denote, respectively, the propensity-score
adjusted weights and the nonresponse calibrated weights computed in this two-step procedure,
then the calibration equations in the second step can be based on either a set of U-level calibration
margins

> @i =t, (6)

1€S,.
or a set of S-level calibration margins
[ISE 1€s
The latter set of constraints requires that the auxiliary variables z; are observed for all sample
units, but it allows us to replace the possibly lacking information on the population totals ¢, with
an unbiased sample estimate. A review of the available approaches for estimating the propensity-

score adjusted weights w; can be found in Brick (2013).

3 Computing calibrated weights in Stata

This section focuses on the computation of calibrated weights in Stata by the sreweight command
(Pacifico 2014). We provide a variety of examples based on data from release 6.0.0 of SHARE,
a unique longitudinal survey with rich micro-level information on people aged 50 and older in 20
European countries and Israel. Although five waves of SHARE are currently available, we restrict
attention to the calibrated cross-sectional weights in the first wave of the SHARE panel and to the
calibrated longitudinal weights between the first two waves. Both types of weights are computed
at the individual level for inference to the target population of individuals and at the household

level for inference to the target population of households.

3.1 My SHARE databases

SHARE data can be used for a variety of cross-sectional and longitudinal studies. For the purposes
of cross-sectional studies, the target population in each country consists of persons of 50 years or
older at a particular point in time and their possibly younger spouses/partners, who speak (one
of) the official language(s) of the country (regardless of nationality and citizenship) and who do
not live either abroad or in institutions such as prisons and hospitals during the entire fieldwork
period (Bergmann et al. 2017). For longitudinal studies, the target population is typically defined

as the cross-sectional target population at the beginning of a time reference period that survives



up to the end of the period considered (see, e.g., Lynn, 2009). These target populations could
also be defined in terms of households as all households with at least one member belonging to the
cross-sectional /longitudinal target population of individuals.

In this section we show how to extract cross-sectional and longitudinal samples of individuals
and households for representing these alternative variants of the SHARE target population. Below,

we consider the sample of individuals interviewed in the first wave.

Extract individual data from SHARE wave 1

* ¥ ¥

. local SHARE_wl "C:\DATA\SHARE\sharewl\Release 6.0.0"

. qui use "“SHARE_wl \sharewl_rel6-0-O_cv_r", clear

. keep mergeid hhidl country gender yrbirth interview
. qui gen age_wl1=2004-yrbirth if yrbirth>0

. qui keep if interview==

. drop interview

. qui merge mergeid using " SHARE_wl \sharewl_rel6-0-0_gv_weights", ///
> keep(dw_wl cciw_wl) sort

. assert _merge==
. drop _merge

. qui merge mergeid using " SHARE_wl\sharewl_rel6-0-0_gv_housing", ///
> keep(nuts1_2003) sort

. assert _merge==
. drop _merge
. sort mergeid

. qui saveold mydata_wl_ind, replace

. tab country

Country

identifier Freq. Percent Cum.
Austria 1,569 5.16 5.16
Germany 2,997 9.85 15.00
Sweden 3,049 10.02 25.02
Netherlands 2,968 9.75 34.77
Spain 2,316 7.61 42.38
Italy 2,553 8.39 50.77
France 3,122 10.26 61.03
Denmark 1,706 5.61 66.64
Greece 2,897 9.52 76.15
Switzerland 997 3.28 79.43
Belgium 3,810 12.52 91.95
Israel 2,450 8.05 100.00

Total 30,434 100.00




. describe

Contains data from mydata_wl_ind.dta

obs: 30,434

vars: 10 27 Dec 2017 12:10

size: 2,495,588 (_dta has notes)

storage display value

variable name  type format label variable label
mergeid stri2  %12s Person identifier (fix across modules and waves)
hhidl stril  %lis Household identifier (wave 1)

country byte %14.0g country Country identifier
gender byte %10.0f gender Male or female
yrbirth int %10.0f dkrf Year of birth
age_wl float  %9.0g
dw_wl double %10.0g Design weight - wave 1

cciw_wl double %10.0g Calibrated cross-sectional individual weight - wave 1
nuts1_2003 str27 %h27s NUTS level 1: nomenclature of territorial units for

statistics

Sorted by: mergeid

. list mergeid hhidl country gender yrbirth in 1/5, sepby(hhidl) noobs

mergeid hhid1l country gender yrbirth
AT-000327-01  AT-000327-A  Austria Male 1952
AT-000327-02  AT-000327-A  Austria Female 1955
AT-001816-01 AT-001816-A  Austria  Female 1943
AT-001816-02  AT-001816-A  Austria Male 1948
AT-002132-01  AT-002132-A  Austria Female 1933

*

In total, the release 6.0.0 of the wave 1 data includes 30,434 respondents, with national samples
ranging from a minimum size of 997 observations in Switzerland and a maximum size of 3,810
observations in Belgium. The database mydata_wi_ind contains information on the individual and
household identifiers, the country indicator, basic demographic characteristics of the respondents
(gender, year of birth, age at the time of the wave 1 interview, and NUTS level 1), the design
weights, and the calibrated cross-sectional individual weights. In Section 3.3, we shall illustrate
how to reproduce the calibrated weights cciw_wl.

In addition to individual level information, SHARE collects a variety of household level data
about consumption, income and wealth. For this type of studies, we are often interested in con-
structing a sample of households. Our Stata code to extract household level data is similar before,
but some attention is needed when reshaping the individual level data to select one observation for

each household.



Extract household data from SHARE wave 1

* ¥ *

. local SHARE_wl "C:\DATA\SHARE\sharewl\Release 6.0.0"

. qui use "“SHARE_wl \sharewl_rel6-0-O_cv_r", clear

. keep mergeid hhidl country gender yrbirth interview
. qui gen age_w1=2004-yrbirth if yrbirth>0

. sort mergeid

. bys hhidl: gen member=_n

. drop mergeid

. rename gender gender_

. rename yrbirth yrbirth_

. rename age_wl age_wl_

. rename interview interview_

. reshape wide gender_ yrbirth_ age_ interview_, i(hhidl) j(member)
(note: j =1234567389 10)

Data long -> wide

Number of obs. 43993 -> 20809

Number of variables 7 -> 42

j variable (10 values) member ->  (dropped)

xij variables:
gender_ -> gender_1 gender_2 ... gender_10
yrbirth_ -> yrbirth_1 yrbirth_2 . yrbirth_10
age_wl_ -> age_wl_1 age wl_2 ... age_wl_10

interview_ -> interview_1 interview_2 ... interview_10

. qui compress

. sort hhidil

. qui merge hhidl using "~ SHARE_wl~\sharewl_rel6-0-0_gv_weights", ///

> keep(dw_wl cchw_wl)

. assert _merge==3

. qui bys hhidl: keep if _n==

. drop _merge

. sort hhidil

. qui merge hhidl using " SHARE_wi \sharewl_rel6-0-0_gv_housing", ///

> keep (nuts1_2003)
. assert _merge==
. qui bys hhidl: keep if _n==1

. drop _merge

. sort hhidil

. qui saveold mydata_wl_hhs, replace



. tab country

Contains data from mydata_wl_hhs.dta

Country
identifier Freq. Percent Cum.
Austria 1,173 5.64 5.64
Germany 1,993 9.58 15.21
Sweden 2,137 10.27 25.48
Netherlands 1,946 9.35 34.84
Spain 1,686 8.10 42.94
Italy 1,772 8.52 51.45
France 2,053 9.87 61.32
Denmark 1,175 5.65 66.97
Greece 1,981 9.52 76.49
Switzerland 706 3.39 79.88
Belgium 2,519 12.11 91.98
Israel 1,668 8.02 100.00

Total 20,809 100.00
. describe

obs: 20,809
vars: 45 29 Dec 2017 00:49
size: 2,226,563 (_dta has notes)
storage display value
variable name type format label variable label
hhidl stril  %lis Household identifier (wave 1)
gender_1 byte %10.0f gender 1 gender_
yrbirth_1 int %10.0f dkrf 1 yrbirth_
interview_1 byte %21.0g interview
1 interview_
age_wi_1 int %9.0g 1 age_wl_
(output omitted )
gender_10 byte %10.0f gender 10 gender_
yrbirth_10 int %10.0f dkrf 10 yrbirth_
interview_10 byte %21.0g interview
10 interview_
age_wi_10 byte %9.0g 10 age_wl_
country byte %14.0g country Country identifier
dw_wl double %10.0g Design weight - wave 1
cchw_wl double %10.0g Calibrated cross-sectional household weight - wave 1
nuts1_2003 str27  %27s NUTS level 1: nomenclature of territorial units for

statistics

Sorted by: hhidl

.ok

weights is discussed in Section 3.4.

The database mydata_wl hhs consists of 20,809 households, with national samples ranging from
a minimum size of 706 observations in Switzerland and a maximum size of 2,519 observations
in Belgium. Notice that, for the purpose of reproducing the calibrated cross-sectional household
weights cchw_wl, we have stored the information about gender, year of birth, age and interview

status of all household members in a wide format. The construction of this type of calibrated

Our next example concerns the balanced sample of individuals interviewed in both the first and

second waves useful for longitudinal studies. Our Stata code is similar to the one for extracting the

10



cross-sectional sample of individuals, but now we must pay specific attention to correctly selecting
the longitudinal sample of respondents that were present in both waves (balanced sample). The

underlying code is as follows:

A
. * Extract individual data for longitudinal sample

*
.k

. local SHARE "C:\DATA\SHARE"
. local wi = 1 // initial wave //
. local wf = 2 // final wave //

*
*

. global w = "1_“wi”_“wf""

. * Identify longitudinal (balanced) sample
. forvalues wj="wi (1) wf" {
2. qui use "data/sharew wj _rel6-0-O_cv_r", clear

3. qui keep if interview==

4. qui keep mergeid

5. if "wj > wi” qui merge 1:1 mergeid using temp_balanced_ii,keep(3) nogen
6. sort mergeid

7. qui save temp_balanced_ii,replace

8.

. * Merge longitudinal sample
. qui use "data/sharew wi _rel6-0-O_cv_r", clear

. keep mergeid hhidl country gender yrbirth interview
. qui gen age_wl = 2004 - yrbirth if yrbirth>0
. qui keep if interview==1

. drop interview

. qui merge 1:1 mergeid using "data/sharewX_rel6-0-0_gv_longitudinal_weights_wilw2", ///
> keepus (dw_wl cliw_b) assert(l 3) nogen

. qui merge 1:1 mergeid using "data/sharew wi _rel6-0-0_gv_housing", 11/
> keepus (nuts1_2003) assert(3) nogen

. qui merge 1:1 mergeid using temp_balanced_ii

. gen balanced = _merge==

. cap lab drop balanced

. lab define balanced O "not all waves" 1 "all waves"
. lab value balanced balanced

. tab country balanced,m

Country balanced
identifier not all w all waves Total
Austria 437 1,132 1,569
Germany 1,398 1,599 2,997
Sweden 959 2,090 3,049
Netherlands 1,167 1,801 2,968
Spain 824 1,492 2,316
Italy 782 1,771 2,553
France 1,090 2,032 3,122
Denmark 443 1,263 1,706
Greece 447 2,450 2,897
Switzerland 267 730 997
Belgium 942 2,868 3,810
Israel 762 1,688 2,450
Total 9,518 20,916 30,434

. drop if balanced==0
(9,518 observations deleted)

. drop _merge balanced

11



. * Save data
. qui compress

. sort mergeid

. qui saveold mydata_long_ind, replace

. describe

Contains data from mydata_long_ind.dta

obs: 20,916

vars: 9 12 Jan 2018 12:55

size: 1,505,952 (_dta has notes)

storage display value

variable name type format label variable label
mergeid stri2  %12s Person identifier (fix across modules and waves)
hhid1 stril  %l1ils Household identifier (wave 1)

country byte %14.0g country Country identifier
gender byte %10.0f gender Male or female
yrbirth int %10.0f dkrf Year of birth
age_wl int %9.0g
dw_wl double %10.0g Design weight - wave 1

cliw_b double %10.0g Calibrated longitudinal individual weight - panel: 1_2
nuts1_2003 str27  %27s NUTS level 1: nomenclature of territorial units for

statistics

Sorted by: mergeid
. list mergeid hhidl country gender yrbirth in 1/5, sepby(hhidl) noobs

mergeid hhidl  country gender yrbirth
AT-000327-01  AT-000327-A  Austria Male 1952
AT-000327-02  AT-000327-A  Austria Female 1955
AT-001816-02  AT-001816-A  Austria Male 1948
AT-002132-01  AT-002132-A  Austria Female 1933
AT-004234-01  AT-004234-A  Austria Male 1950

The release 6.0.0 of the SHARE data includes 20,916 respondents that were present in the first
two waves, with national samples ranging from a minimum size of 730 observations in Switzerland
and a maximum size of 2,868 observations in Belgium. In total, there are 9,518 respondents
interviewed in wave 1 but not in wave 2 that have been dropped from our longitudinal sample.
The database mydata_long_ind contains information on the individual and household identifiers,
the country indicator, basic demographic characteristics of the respondents (gender, year of birth,
age at the time of the wave 1 interview, and NUTS level 1), the design weights in wave 1, and
the calibrated longitudinal individual weights for the balanced panel from wave 1 to wave 2. In
Section 3.5, we shall illustrate how to reproduce the calibrated weights cliw_b.

Like we mentioned above, we are often interested in extracting a sample of households. This

is also true for studies involving longitudinal samples. Thus, the sample of interest could also be

12



defined in terms of balanced panel of households. Specifically, in this case we are interested in all
households with at least one member belonging to the longitudinal sample of individuals. Our Stata
code to extract household level data is similar to the previous one, but again we must pay special
attention to correctly selecting the longitudinal sample of households with at least one member
present both in wave 1 and in wave 2 (balanced sample). Furthermore, as in the cross-sectional

case, some attention is needed to select one observation for each household.

Extract household data for longitudinal sample (e.g. from wave 1 to wave 2)

* ¥ ¥

. local SHARE "C:\DATA\SHARE"
. local wi = 1 // initial wave //
. local wf = 2 // final wave //

. global w = "1_"wi " _“wf™"

. * Identify longitudinal (balanced) sample
. forvalues wj="wi (1) wf~ {
2. qui use "data/sharew wj _rel6-0-O_cv_r", clear

3. gen str9 hhmergeid = mergeid

4. keep hhmergeid

5. bys hhmergeid:keep if _n==

6. if "wj > wi” qui merge 1:1 hhmergeid using temp_balanced_hh,keep(3) nogen
7. sort hhmergeid

8. qui save temp_balanced_hh,replace

9. }

. * Merge longitudinal sample
. use "data/sharewX_rel6-0-0_gv_longitudinal_weights_wlw2",replace

. gen str9 hhmergeid = mergeid
. qui bys hhmergeid: keep if _n==
. keep hhmergeid dw_wl clhw_b

. qui save temp_long,replace

. qui use "data/sharew wi _rel6-0-O_cv_r", clear

. gen str9 hhmergeid = mergeid

. keep hhmergeid hhidl country gender yrbirth interview
. qui gen age_wl = 2004 - yrbirth if yrbirth>0

. bys hhidl: gen member = _n

. rename gender gender_

. rename yrbirth yrbirth_

. rename age_wl age_wl_

. rename interview interview_

. reshape wide gender_ yrbirth_ age_ interview_, i(hhidl) j(member)
(note: j=1234567389 10)

Data long -> wide

Number of obs. 43993 -> 20809

Number of variables 8 -> 43

j variable (10 values) member ->  (dropped)

xij variables:
gender_ -> gender_1 gender_2 ... gender_10
yrbirth_ -> yrbirth_1 yrbirth_2 ... yrbirth_10
age_wl_ -> age_wl_1 age_wl_2 ... age_wil_10

interview_ -> interview_1 interview_2 ... interview_10

13



. qui merge 1:1 hhmergeid using temp_long, ///

> keepus (dw_wl clhw_b) assert(l 3) nogen
. qui merge 1:m hhidl using "data/sharew wi _rel6-0-O_gv_housing", ///
> keepus (nuts1_2003) assert(3) nogen

. qui bys hhidl: keep if _n==

. qui merge 1:1 hhmergeid using temp_balanced_hh,assert(1 3)
. gen balanced = _merge==

. cap lab drop balanced

. lab define balanced O "not all waves" 1 "all waves"

. lab value balanced balanced

. noi tab country balanced,m

Country balanced
identifier not all w all waves Total
Austria 273 900 1,173
Germany 874 1,119 1,993
Sweden 517 1,620 2,137
Netherlands 606 1,340 1,946
Spain 467 1,219 1,686
Italy 505 1,267 1,772
France 601 1,452 2,053
Denmark 238 937 1,175
Greece 252 1,729 1,981
Switzerland 153 553 706
Belgium 519 2,000 2,519
Israel 353 1,315 1,668
Total 5,358 15,451 20,809

. drop if balanced==0
(5,358 observations deleted)

. drop _merge balanced

. * Save data
. qui compress

. sort hhidl

. qui saveold mydata_long_hhs, replace

. describe

Contains data from mydata_long_hhs.dta

obs: 15,451
vars: 46 12 Jan 2018 12:55
size: 1,792,316 (_dta has notes)
storage display value

variable name  type format label variable label
hhidl stril  Yils Household identifier (wave 1)
gender_1 byte %10.0f gender 1 gender_
yrbirth_1 int %10.0f dkrf 1 yrbirth_
interview_1 byte %21.0g interview

1 interview_
age_wi_1 int %9.0g 1 age_wil_
gender_2 byte %10.0f gender 2 gender_
yrbirth_2 int %10.0f dkrf 2 yrbirth_
interview_2 byte %21.0g interview

2 interview_
age_wl_2 byte %9.0g 2 age_wl_
gender_3 byte %10.0f gender 3 gender_
yrbirth_3 int %10.0f dkrf 3 yrbirth_
interview_3 byte %21.0g interview

3 interview_
age_wl_3 int %9.0g 3 age_wil_
gender_4 byte %10.0f gender 4 gender_
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yrbirth_4 int %10.0f dkrf 4 yrbirth_

interview_4 byte %21.0g interview

4 interview_
age_wl_4 byte %9.0g 4 age_wi_
gender_5 byte %10.0f gender 5 gender_
yrbirth_5 int %10.0f dkrf 5 yrbirth_
interview_5 byte %21.0g interview

5 interview_
age_wl_5 byte %9.0g 5 age_wil_
gender_6 byte %10.0f gender 6 gender_
yrbirth_6 int %10.0f dkrf 6 yrbirth_
interview_6 byte %21.0g interview

6 interview_
age_wl_6 byte %9.0g 6 age_wl_
gender_7 byte %10.0f gender 7 gender_
yrbirth_7 int %10.0f dkrf 7 yrbirth_
interview_7 byte %21.0g interview

7 interview_
age_wl_7 byte %9.0g 7 age_wl_
gender_8 byte %10.0f gender 8 gender_
yrbirth_8 int %10.0f dkrf 8 yrbirth_
interview_8 byte %21.0g interview

8 interview_
age_wl_8 byte %9.0g 8 age_wil_
gender_9 byte %10.0f gender 9 gender_
yrbirth_9 int %10.0f dkrf 9 yrbirth_
interview_9 byte %21.0g interview

9 interview_
age_wl_9 byte %9.0g 9 age_wil_
gender_10 byte %10.0f gender 10 gender_
yrbirth_10 int %10.0f dkrf 10 yrbirth_
interview_10 byte %21.0g interview

10 interview_
age_wi_10 byte %9.0g 10 age_wi_
country byte %14.0g country Country identifier
hhmergeid str9 %9s
dw_wl double %10.0g Design weight - wave 1
clhw_b double %10.0g Calibrated longitudinal household weight - panel: 1_2
nuts1_2003 str27  %27s NUTS level 1: nomenclature of territorial units for

statistics

Sorted by: hhidl
. list hhidl country gender_1 gender_2 yrbirth_1 yrbirth_2 in 1/3, noobs

hhidl  country gender_1 gender_2 yrbirt~l yrbirt-2

AT-000327-A Austria Male Female 1952 1955
AT-001816-A Austria Female Male 1943 1948
AT-002132-A Austria Female Male 1933 1966

*

In total, the release 6.0.0 of the SHARE data includes 15,451 households with at least one
member present both in wave 1 and in wave 2 (balanced sample), with national samples ranging
from a minimum size of 553 observations in Switzerland and a maximum size of 2,000 observations
in Belgium. The other 5,358 households of the 20,809 in wave 1 had no members present in wave
2. Thus, these households were not used in our longitudinal sample contained in the database

mydata_long hhs. Again, for the purpose of reproducing the calibrated longitudinal household
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weights for the balanced panel c1hw_b, we have stored the information about gender, year of birth,
age and interview status of all household members in a wide format. The construction of this type

of calibrated weights is discussed in Section 3.6.

3.2 Vectors of calibration margins

In this section we show how to construct the vector of calibration margins used to compute cal-
ibrated weights. We exploit the database margins nuts1.dta, which contains population figures
and number of deaths by year, region, age and gender for all countries involved in the first six waves
of SHARE. The data comes from the Central Bureau of Statistics for Israel, and from Eurostat
for all other European countries. Regions for European countries are statistical regions at NUTS1
level Age is defined in most countries as single years from the age of 30 to 88, plus the open-ended
class aged 89 or over. Finally, population and number of deaths are included separately for males
and females. Detailed documentation of the database margins nuts1 is provided in “Deliverable
2.97.

Below we discuss the do-file CalMar. By setting macros properly, this file allows creating vectors
of population margins for gender and age groups for a specific country. Population can refer either
to population in a given year (used for cross-sectional weights), or to population in a given year
that survives up to a certain later year (used for longitudinal weights). The latter is obtained from
the do-file CalMar by subtracting from the population in the initial year the number of deaths in
the following years up to the final one. Specifically, this do-file creates one scalar and three vectors.
The first scalar contains, for the specific country, the target population related to the chosen age
groups and years (for example population 50+ in 2004). The first two vectors contain, respectively,
the total population by gender-age group (i.e. males and females in the chosen age groups) and
of the population by NUTS1 regional area. Stacking together the gender-age group vector and
the vector obtained by excluding the first component of the NUTS1 vector yields the vector of
calibration margins used to construct the SHARE calibrated weights.

The macros needed to initialize the do-file CalMar are the country label (macro cc), the country
number (macro cc_num), the reference year (macro pop_time), the final year (macro mort_time),
the number of age groups (macro age _groups), and the lower (macro age thr low) and upper
(macro age_thr_upp) thresholds of the age groups. The macro mort_time (final year) is only used
for computing longitudinal weights, i.e. for population in reference year surviving in final year. For

cross-sectional weights this macro must be set to zero. The macro w defines simply a label for the
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wave of interest.

* Set local macros
*
. local cc ${cc} // country
. local cc_num ${cc_num} // country number //
. local pop_time ${pop_time} // reference year
. local mort_time ${mort_time} // final year
. local w ${w}
. local age_groups ${age_groups} // number of age groups
. local age_thr_low ${age_thr_low} // lower thresholds of age groups
. local age_thr_upp ${age_thr_upp} // upper thresholds of age groups
* Vector of calibration margins from margins_nutsl.dta

. qui use "margins_nutsl", clear
s

. qui keep if country==""cc™"

. gen age_mort = age - (year - “pop_time~)

. local age_min: word “age_groups” of “age_thr_low~
. local age_max: word 1 of “age_thr_upp~
. qui drop if age< age_min~

. assert age>="age_min~ & age<="age_max’

. * Joint age-sex classification
. local rname ""

. local t=1

. matrix “cc’_w w _P=0

. cap matrix drop “cc’_w w _P_AGE_THR
. cap matrix drop “cc’_w w _P_SA

. forvalues ss=0(1)1 {
2. if “ss”==0 local slab "M"

3. if “ss”==1 local slab "F"
4. forvalues aa=1(1) age_groups” {
5. local age_upp: word “aa” of “age_thr_upp~
6. local age_low: word “aa” of “age_thr_low~
7. qui sum pop if year=="pop_time~ ///
> & sex=="ss’ /17
> & (age>="age_low & age<="age_upp )
8. local marg_"t =r(sum)
9. qui sum deaths if year>="pop_time~ ///
> & year< mort_time- ///
> & sex=="ss” ///
> & (age_mort>="age_low” & age_mort<="age_upp )
10. local marg_"t ="marg_"t~ “-r(sum)
11. assert "marg_"t~">0
12. matrix “cc’_ww _P = “cc’_ww _P + "marg_"t~~
13. matrix “cc’_w w _P_SA = nullmat( cc'_w w _P_SA) \ (Cmarg_"t~ ")
14. if “aa’==1 local rname "“rname” “slab - age_low +"
15. else local rname "“rname” “slab’-"age_low -"age_upp "
16. if “ss”==0 matrix “cc’_w w _P_AGE_THR=nullmat(cc _w w _P_AGE_THR)\("age_low~, age_upp )
17. local t="t"+1
18. }
19. }
. matrix coln “cc’_w w _P_SA =POP
. matrix rown “cc’_w w _P_SA ="rname”
. matrix coln “cc’_w w _P =P0OP
. matrix rown “cc’_w w _P =TOT
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. matrix coln “cc’_w w _P_AGE_THR ="age_thr_low age_thr_upp"

. matrix list “cc’_ww _P

. matrix list “cc'_w w _P_SA

. * NUTS1 classificati
. qui tab nutsl
. local nreg=r(r)
. if “nreg™>1 {
cap matrix drop “c
local rname ""
local t=1
encode nutsl, gen(

on

c’_w w _P_NUTS1

REG)

forvalue nn=1(1) nreg” {

2. local nn_lab:
3. qui sum pop

\'%

4. local marg_"t
5. qui sum death

vV V V V

local marg_"t
assert ‘marg_
matrix “cc _w
local rname "
local t="t +1
}
matrix coln “cc’_w
matrix rown “cc’_w
matrix “cc’_ww _P
matrix “cc’_ww _P

= O OO0~

=

. else {

matrix “cc”
. matrix “cc”
.}
. matrix list “cc'_w'w
. matrix list “cc'_w'w

.ok

label REG "nn~
if year=="pop_time- ///
& sex== ///
& nutsl==""nn_lab™"
“=r (sum)
s if year>="pop_time~ ///
& year< mort_time~ ///
& sex== /17
& (age_mort>="age_min~) ///

& nutsl==""nn_lab™"

“="marg_"t~ “-r(sum)

“t”7>0

“w _P_NUTS1 = nullmat("cc”_w w _P_NUTS1)\(marg_"t~ ")
“rname” “nn_lab™"

“w’_P_NUTS1 =POP

“w _P_NUTS1 ="rname”
_N ="cc’_w w _P_NUTS1[2.. nreg”,1]
_MARG ="cc’_ww _P_SA\ “cc _ww _P_N

_w w _P_NUTS1 ="cc’_w w _P
_ww _P_MARG ="cc’_ww _P_SA

“_P_NUTS1
“_P_MARG

3.3 Calibrated cros

In this section we show

s-sectional individual weights

how to reproduce the calibrated cross-sectional individual weights (i.e.

the variable cciw_wl) for a given country participating in first wave of SHARE. Without loss of

generality we focus on Germany (country label DE - country number 12) by setting the following

global macros

* ¥ *

Select wave (e.g. wl) and country (e.g. DE)

. global cc "DE"
. global cc_num "12"
. global pop_time 2004

// country label //
// country number //

// reference year //
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. global mort_time O // final year //

. global w "1" // initial wave //

. global age_groups 4 // number of age groups

. global age_thr_low "80 70 60 50" // lower thresholds of age groups
. global age_thr_upp "89 79 69 59" // upper thresholds of age groups

*

The remainder of our code can be easily adapted to the other countries and waves by changing the
values of these global macros. Next, we run the do-file CalMar to define the vector of calibration

margins for the chosen wave-country combination.

.ok

. * Get local macros

.ok

. local cc ${cc} // country label //
. local cc_num ${cc_num} // country number //
. local w ${w}

Run CalMar.do

* % *

. noi run CalMar.do

symmetric DE_wi_P[1,1]
POP
TOT 30274231

DE_wi_P_SA[8,1]
POP
M-80+ 946653
M-70-79 2680171
M-60-69 5051384
M-50-59 4962760
F-80+ 2501710
F-70-79 3769107
F-60-69 5387424
F-50-59 4975022

DE_wi_P_NUTS1[16,1]
POP
DE1 3728737
DE2 4411850
DE3 1207394
DE4 969617
DE5 257730
DE6 620420
DE7 2222275
DE8 640323
DE9 2930725
DEA 6584773
DEB 1492760
DEC 413126
DED 1779562
DEE 1018621
DEF 1067047
DEG 929271

DE_wi_P_MARG[23,1]
POP
M-80+ 946653
M-70-79 2680171
M-60-69 5051384
M-50-59 4962760
F-80+ 2501710
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-70-79
-60-69
-50-59
DE2
DE3
DE4
DE5
DE6
DE7
DE8
DE9
DEA
DEB
DEC
DED
DEE
DEF
DEG

]

3769107
5387424
4975022
4411850
1207394
969617
257730
620420
2222275
640323
2930725
6584773
1492760
413126
1779562
1018621
1067047
929271

As described in the previous section, this do-file creates one scalar and three vectors in the form of

Stata matrices. The scalar DE_wl_P contains the German target population aged 50+ at the time

of the wave

a breakdown of the population by gender-age group (i.e. males and females in the age groups
[50 — 59], [60 — 69], [70 — 79], [80+]) and NUTSI regional area. Stacking together the vector
DE_w1_P_SA and the vector obtained by excluding the first component of DE_w1_P_NUTS1 yields the
vector of calibration margins DE_w1_P_MARG used to construct the SHARE calibrated weights. The

dimensions of these vectors are stored in a set of local macros because they correspond to the

1 interview, while the vectors DE_wl P_SA and DE_wl P _NUTS1 contain, respectively,

number of calibration equations.

* ¥ *

Number of calibration equations

. mata:
. local
. mata:
. local
. local

. local

*

st_matrix("C1",rows(st_matrix("${cc}_w${w}_P_SA")))
c1 = c1[1,1]
st_matrix("C",rows(st_matrix("${cc}_w${w}_P_MARG")))
Cc = Cl[1,1]

c2=°C" - "C1~

nag = "C1~ / 2

Next we load the individual level database and select the DE subsample:

* ¥ *

Load my SHARE database and select the country-specific sample

. qui use mydata_wl_ind, clear

. qui keep if country=="cc_num”

.ok
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Our set of calibration variables consists of age, gender and NUTS1 regional area. Summary statistics

reveal that the variables age_wl and dw_w1 contain one missing observation due to item nonresponse.

Unless we impute these missing values, the calibrated weight assigned to this observation will be

also missing. In addition, we need to ensure that calibrated weights are missing for all respondents

aged less than 50 years because these persons do not belong to the target population of interest.

Based on these criteria, we find that calibrated weights will be missing for 69 observations.

Calibration variables

* ¥ *

. sum age gender dw_wl

Variable Obs Mean Std. Dev. Min Max
age_wl 2,996 63.95828 9.769357 30 97
gender 2,997 1.541875 .4983265 1 2

dw_wil 2,996 5013.145 1819.142  1987.101  9525.167

. qui gen str3 nutsl=nuts1_2003

. qui gen region = .

. qui replace region=0 if nutsl=="DE1"

. qui replace region=1 if nutsl=="DE2"

. qui replace region=2 if nutsi=="DE3"

. qui replace region=3 if nuts1=="DE4"

. qui replace region=4 if nuts1=="DE5"

. qui replace region=5 if nutsl=="DE6"

. qui replace region=6 if nutsi=="DE7"

. qui replace region=7 if nutsi=="DE8"

. qui replace region=8 if nuts1=="DE9"

. qui replace region=9 if nuts1=="DEA"

. qui replace region=10 if nuts1=="DEB"

. qui replace region=11 if nutsl=="DEC"

. qui replace region=12 if nutsl=="DED"

. qui replace region=13 if nutsi=="DEE"

. qui replace region=14 if nuts1=="DEF"

. qui replace region=15 if nuts1=="DEG"

. tab region, mis

region Freq. Percent Cum.

0 325 10.84 10.84
1 434 14.48 25.33
2 108 3.60 28.93
3 94 3.14 32.07
4 27 0.90 32.97
5 64 2.14 35.10
6 276 9.21 44 .31
7 45 1.50 45.81
8 294 9.81 55.62
9 656 21.89 77.51
10 138 4.60 82.12
11 26 0.87 82.98
12 191 6.37 89.36
13 86 2.87 92.23
14 149 4.97 97.20
15 84 2.80 100.00
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Total ‘ 2,997 100.00
. qui gen nowi=(dw_wl==.|gender==.|age==.|region==.|age<50)

. noi tab nowi, mis

nowi Freq. Percent Cum.
0 2,928 97.70 97.70
1 69 2.30 100.00
Total 2,997 100.00

In the following code we define a set of binary indicators for our calibration variables. More
precisely, we generate the binary indicators xi_1-xi_8 for the 8 gender-age groups and the binary
indicators xi_9-xi_23 for the 15 NUTSI1 regional areas. This list of these indicators is stored in

the local macro 1list_Cvar.

*
. * Binary indicators for calibration groups
. local t =1
. forvalues ss=1(1)2 {
2. forvalues aa=1(1) nag” {
3. local 1b = ${cc}_w${w}_P_AGE_THR[ aa~,1]
4, local ub = ${cc}_w${w}_P_AGE_THR[ aa~,2]
5. if “aa’==1 qui gen xi_"t =(age_w${w}>="1b")*(age_w${w}'!=. )+*(gender=="ss’) if nowi!=1
6. else qui gen xi_"t =(age_w${w}>="1b")*(age_w${w}<="ub ) *(gender=="ss”) if nowi!=1
7. local t = "t~ + 1
8. }
9.

1

. forvalues i=1(1)"C2" {
2. local i2 = “C1° +

3. qui gen xi_"i2° = (region=="i" & age_w${w}>=50 & age_w${w}!=. & gender!=.) if nowi!=1
4. }
. list mergeid gender age_wl xi_1-xi_8 if _n<=5, noobs
mergeid gender age_wl xi_1 xi_ 2 xi_3 xi_4 xi b xi_6 xi_ 7 xi_8
DE-000066-01 Male 53 0 0 0 1 0 0 0 0
DE-000111-01  Female 80 0 0 0 0 1 0 0 0
DE-000132-01  Female 51 0 0 0 0 0 0 0 1
DE-001225-01 Male 7 0 1 0 0 0 0 0 0
DE-001225-02  Female 69 0 0 0 0 0 0 1 0
. list mergeid region xi_9-xi_23 if _n<=b, noobs

(output omitted )
. local list_CVar ""

. forvalues i=1(1)"C~ {
2. local list_CVar “list_CVar™ xi_"i~
3.}

*
*

At this stage of the procedure we have all necessary ingredients for reproducing the SHARE cali-
brated weights. This can be done by the sreweight command. In addition to the list of calibration

variables, this command requires to specify three arguments: the option nweight for the new vari-
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able containing the calibrated weights, the option sweight for the variable containing the original
design weights, and the option total for the vector containing the population calibration margins.
As additional arguments, it also provides a number of options to control the choice of the distance
function between the calibrated and the design weights and other useful features of the iterative
process (e.g. starting values, maximum number of iterations and tolerance level) used to deter-
mine the vector of Lagrange multipliers. Below we show the syntax of this command using a logit
specification of the distance function with lower bound [ = 0.01 and upper bound v = 4. Since
the default number of 50 iterations is not sufficient to reach convergence, we have increased the

maximum number of iteration up to 200 by the niter option.

. * Compute calibrated weights (distance function: DS - case 6)
*

. sreweight “list_CVar~ if nowi!=1, /17

> nweight (my_wgt) sweight (dw_wl) ///

> total(${cc}_w${w}_P_MARG) /17

> dfunction(ds) upbound(4) lowbound(.01) ///

> niter(200)

Note: missing values encountered. Rows with missing values are not included in the calibration procedure
Iteration 1
(output omitted )
Iteration 78
Iteration 79 - Converged

Survey and calibrated totals

Variable Original New
xi_1 261769 946653
xi_2 1330893 2680171
xi_3 2561657 5051384
xi_4 2376842 4962760
xi_b 957141 2501710
xi_6 1743516 3769107
xi_ 7 2678301 5387424
xi_8 2565563 4975022
xi_9 2041721 4411850

xi_10 561047 1207394
xi_11 451408 969617
xi_12 156807 257730
xi_13 321432 620420
xi_14 1268037 2222275
xi_15 274075 640323
xi_16 1390704 2930725
xi_17 3172213 6584773
xi_18 674739 1492760
xi_19 132149 413126
xi_20 887983 1779562
xi_21 423823 1018621
xi_22 675615 1067047
xi_23 406627 929271

Note: type-ds distance function used
Current bounds: upper=4 - lower=.01

.ok
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In this example, convergence was achieved at the 79-th iteration. The new calibrated weights are
stored in the variable my_wgt and the associated vector of Lagrange multipliers is available in the
output vector r(1m). Notice that, since the original design weights dw_w1 lead to a downward biased
estimates of the known population totals, the calibration procedure increases uniformly the weights
of all sample units to satisfy the 23 calibration equations. Below, we compare our calibrated weights
my_wgt with both the original design weights dw_wl and the calibrated weights cciw_wl available
in the release 6.0.0 of the SHARE data.

Comparison between calibrated and design weights

* ¥ *

. qui gen double r_wgt=my_wgt/dw_wl

. gen my_wgt_f=(my_wgt==.

. bysort hhidl: gen double hh=(_n==1)

. table my_wgt_f, c(count hh sum my_wgt) row format(%9.0f)

my_wgt_f N(hh) sum(my_wgt)
0 2,928 30274231

1 69 0

Total 2,997 30274231

. compare my_wgt cciw_wl

difference
count minimum average maximum
my_wgt=cciw_wl 2928
jointly defined 2928 0 0 0
jointly missing 69
total 2997
. twoway ///
> (kdensity dw_wl , lc(blue) 1lp(solid)) ///
>  (kdensity my_wgt, lc(red) 1p(-) ) ///
>, 17/
> ytitle(density) xtitle(weights) graphr(c(white)) ///
> legend( ///
> order ( ///
> 1 "design wgt" /17
> 2 "calibrated wgt" ///
> ) ///
> row(2) col(3) symxsize(5) rowg(*.4) /17
> region(lc(white)) position(1) ring(0) /77
> )
. twoway /17
> (kdensity r_wgt, lc(red) 1p(-)) ///
>, ///
> ytitle(density) xtitle(Cal wgt / Des wgt) ///
> xlab(1(1)4) graphr(c(white))
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Notice that the calibrated weights my_wgt coincide exactly with the calibrated weights cciw_wl
available in the SHARE data. These weights contains 69 missing values and 2,928 regular obser-
vations. The sum over all sample units matches exactly the size of the target population. Figure 1
shows a kernel density of the design and the calibrated weights, while Figure 2 shows a kernel
density of the ratio between calibrated and design weights. As expected, calibrated weights are
greater than the design weights. Moreover, the ratio between these two sets of weights lies in the
predefined interval (I,u) = (0.01,4).

Since the distance function between calibrated and design weights is chosen arbitrarily, it is
useful to check robustness of the calibration procedure to alternative specifications of this function.
This can be done in two ways. First, given a logit specification of the distance function, we can
change the lower and upper bounds for the ratio between calibrated and design weights. In the
following code we try to compute the calibrated weights under 25 possible combinations of (I, u)

with [ = {.01, .25, .50,.75,.90} and u = {3.5,4.0,4.5,5.0,5.5}.

Calibrated weights - Alternative bounds

LK I

. local u_list "3.5 4.0 4.5 5.0 5.5"
. local 1_list ".01 .25 .50 .75 .90"
. local 11_num=1

. local wgt_list "my_wgt"

. local r_wgt_list "r_wgt"

. foreach 11 of local 1_list {

2. local uu_num=1

3 foreach uu of local u_list {

4. if "11°==.01 & “uu’==4 continue

5 di in gr "(L,w: (C11°,"uu’) - ", _c

6 cap sreweight “list_CVar~” if nowi!=1, ///

> nweight (my_wgt_"11_num”_“uu_num”) sweight(dw_wl) ///
> total (${cc}_w${w}_P_MARG) ///
> dfunction(ds) lowbound("11°) upbound(“uu-) ///
> niter(200)

7. if "“r(converged) ""=="yes" {

8. di in ye "Convergence : yes"

9. local wgt_list "“wgt_list” my_wgt_"1l_num”_"uu_num”™"
10. qui gen double r_wgt_"1l_num”_ uu_num =my_wgt_"1l_num _ uu_num /dw_wl
11. local r_wgt_list ""r_wgt_list” r_wgt_"1l_num _“uu_num™"
12. }

13. else di in red "Convergence : no"
14. local uu_num="uu_num +1

15.  }

16. local 11_num="11_num +1

17. %}

(1,u): (.01,3.5) - Convergence : no
(1,u): (.01,4.5) - Convergence : yes
(1,w): (.01,5.0) - Convergence : yes
(1,w): (.01,5.5) - Convergence : yes
(1,u): (.25,3.5) - Convergence : no
(1,w): (.25,4.0) - Convergence : yes
(1,w): (.25,4.5) - Convergence : yes
(1,u): (.25,5.0) - Convergence : yes
(1,u): (.25,5.5) - Convergence : yes
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(1,u): (.50,3.5) - Convergence : no
(1,w): (.50,4.0) - Convergence : yes
(1,u): (.50,4.5) - Convergence : yes
(1,u): (.50,5.0) - Convergence : yes
(1,w): (.50,5.5) - Convergence : yes
(1,u): (.75,3.5) - Convergence : no
(1,u): (.75,4.0) - Convergence : no
(1,w): (.75,4.5) - Convergence : no
(1,u): (.75,5.0) - Convergence : no
(1,u): (.75,5.5) - Convergence : no
(1,u): (.90,3.5) - Convergence : no
(1,u): (.90,4.0) - Convergence : no
(1,w): (.90,4.5) - Convergence : no
(1,u): (.90,5.0) - Convergence : no
(1,u): (.90,5.5) - Convergence : no

. local fig_wgt ""

. foreach wgt of local wgt_list {
2. local fig wgt "“fig_wgt” (kdensity “wgt~)"
3.}
. twoway “fig_wgt~, ytitle(density) xtitle(weights) ylab(0(.0001).0003) graphr(c(white))

. local fig_r_wgt ""

. foreach r_wgt of local r_wgt_list {
2. local fig r_wgt " fig r_wgt~ (kdensity “r_wgt )"
3.}

. twoway “fig_ r_wgt~, ytitle(density) xtitle(weights) graphr(c(white))

.ok

Here, convergence is achieved only for 12 of 25 possible combinations of (I, u). Lack of convergence
occurs in cases where either [ > .50 or v < 4. Figure 3 shows a kernel density of the 12 cali-
brated weights which admit a solution, while Figure 4 shows a kernel density of the ratios between
calibrated weights and original design weights. Both figures suggest that calibrated weights are
robust to alternative choices of the lower and upper bounds in the logit specification of the distance
function.

Our second robustness check concerns the specification of the distance function between cali-
brated and design weights. In the following code, we try to compute calibrated weights using the
chi-square distance function plus three alternative specifications discussed in Deville and Sarndal
(1992) and Pacifico (2014).

Y
. *Calibrated weights with alternative distance functions

.ok

. local dis_func "chi2 a b c"

. foreach dd of local dis_func {

2. di in gr "Distance function “dd"" _col(25) " - ", _c

3. cap sreweight “list_CVar~ if nowi!=1, ///
> nweight (my_wgt_"dd") sweight (dw_wl) ///
> total (${cc}_w${w}_P_MARG) /17
> dfunction( dd") /17
> niter(200)

4. if "“dd""=="chi2"|" r(converged) ""=="yes" {
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5 di in ye "Convergence : yes"

6 qui gen double r_wgt_"dd =my_wgt_-dd /dw_wl

7.

8 else di in red "Convergence : no"

9. }
Distance function chi2 - Convergence : yes
Distance function a - Convergence : no
Distance function b - Convergence : no
Distance function c - Convergence : yes

. sum my_wgt my_wgt_chi2 my_wgt_c

Variable Obs Mean Std. Dev. Min Max
my_wgt 2,928 10339.56 4391.609 3125.645 34565.25

my_wgt_chi2 2,928 10339.56 4392.394 3132.131 34667.13
my_wgt_c 2,928 10339.56 4397.699 3197.321 34797.94

. twoway 17/

>  (kdensity my_wgt , lc(red) 1p(-)) ///

>  (kdemsity my_wgt_chi2 , lc(gs12) 1p(_)) /17

> (kdensity my_wgt_c , lc(gs1) 1p(#..#)) ///

>, /17

> ytitle(density) xtitle(weights) graphr(c(white)) ///

> legend( /17

> order ( ///

> 1 "DS (case 6)" 11/

> 2 "Chi2" 11/

> 3 "c" /17

> ) 11/

> row(3) col(l) symxsize(5) rowg(*.4) 11/

> region(lc(white)) position(1) ring(0) /17

> )

. twoway /17

>  (kdensity r_wgt » lc(red) 1p(-)) /17

> (kdensity r_wgt_chi2 , lc(gs12) 1p(.)) ///

>  (kdensity r_wgt_c , lc(gsl) 1p(#..#)) ///

>, /17

> xlab(1(1)4) ytitle(density) xtitle(Cal wgt/Des wgt) ///

> graphr(c(white)) /17

>  legend( /17

> order ( /17

> 1 "DS (case 6)/dw_wl" ///

> 2 "Chi2/dw_wl" ///

> 3 "C/dw_wl" /17

> ) /17

> row(3) col(l) symxsize(5) rowg(*.4) ///

> region(lc(white)) position(1l) ring(0) ///

> )

Convergence is achieved only for the chi-square distance function and the distance function type-c
in Pacifico (2014). The kernel density plots in Figures 5 and 6 suggest again that the calibration
procedure is rather robust to alternative specifications of the distance function between calibrated

and design weights.

27



3.4 Calibrated cross-sectional household weights

Consider now the calibrated cross-sectional household weights cchw_wl. The main difference with

respect to the calibrated cross-sectional individual weights is that each household member will now

receive an identical calibrated weight that depends on the household design weight and the vectors

of calibration variables of all 50+ household members. The initial steps of the Stata code for

reproducing this type of weights are similar to those discussed in the previous section, including

the specification of calibration margins which are defined at the individual level.

Select wave (e.g. wl) and country (e.g.

DE)

* % *

. global cc "DE"

. global cc_num "12"

. global pop_time 2004

. global mort_time O

. global w "1"

. global age_groups 4

. global age_thr_low "80 70 60 50"
. global age_thr_upp "89 79 69 59"

*

//
//
//
//
//
//
//
//

country label //

country number //

reference year //

final year //

initial wave //

number of age groups

lower thresholds of age groups

upper thresholds of age groups

.k

Get local macros

* ¥ *

. local cc ${cc}

. local cc_num ${cc_num}
. local w ${w}

//
//

country label //

country number //

)
. * Run CalMar.do

. noi run CalMar.do
(output omitted )

.k

Number of calibration equations

* ¥ *

8
o
o
©

. local C1 = C1[1,1]

: st_matrix("C1",rows(st_matrix("${cc}_w${w}_P_SA")))

. mata: st_matrix("C",rows(st_matrix("${cc}_w${w}_P_MARG")))

. local C = C[1,1]
. local C2 = °C~ - "C1~
. local nag = "C1~ / 2

* ¥ *

Load my SHARE database and select the country-specific sample

. qui use mydata_wl_hhs, clear

. qui keep if country=="cc_num~”

*
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* ¥ *

Recode of NUTS1 regional codes

. qui
. qui
. qui
. qui
. qui
. qui
. qui
. qui
. qui
. qui
. qui
. qui
. qui
. qui
. qui
. qui
. qui
. qui

*

gen str3 nutsl=nuts1_2003

gen region = .

replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace

replace

region=0
region=1
region=2
region=3
region=4
region=>5
region=6
region=7
region=8
region=9
region=10
region=11
region=12
region=13
region=14

region=15

if
if
if
if
if
if
if
if
if
if
if
if

nutsil=="DE1"
nutsl=="DE2"
nuts1l=="DE3"
nuts1l=="DE4"
nuts1=="DE5"
nutsl=="DE6"
nuts1=="DE7"
nuts1=="DE8"
nuts1=="DE9"
nuts1l=="DEA"
nuts1=="DEB"
nuts1=="DEC"
nuts1=="DED"
nutsi=="DEE"
nuts1l=="DEF"
nuts1=="DEG"

In the household level data, the binary indicator for missing calibrated weights is equal to 1 if the

design weight dw_wl is missing or there exist no household member aged 50+ years at the time

of the wave 1 interview. Based on this criterion, we find that calibrated cross-sectional household

weights will be missing only for one household.

Binary indicator for missing weights

LR

. gen n_elig_wil=0
. forvalues i=1(1)10 {

2

3.}

. gen nowh=(dw_wl==.|n_elig_w1==0)

. noi tab nowh, mis

qui replace n_elig_wl=n_elig_ wil

+(age_wl_"i">=50 & age_wl_"i"!=.)

nowh Freq. Percent Cum.
0 1,992 99.95 99.95
1 1 0.05 100.00
Total 1,993 100.00

*

The syntax used to create the calibration variables is slightly different from that used before because

our household level database contains information about gender and age of all household members

in a wide format. Here, our Stata code generates a set of indicators (i.e. the variables xh_1-xh_23)

29



indicating the number of household members that belong to each calibration group. As before, the

set of calibration variables is stored in the local macro 1ist_Cvar.

. ox
. * Indicators for the calibration groups
A
. local X="age_wl_"

. local Y="gender_ "

. forvalues i=1(1)10 {
2. qui gen double CI1_"i’= /17

> 1x(CX"71i">=80) * (CX""i7t'=. ) ///

> +2x(CX7Ti7>=70) * (CX"i°<=79) ///

> +3x(CX7Ti7>=60) * (CX"Ti"<=69) ///

> +4x(CX"Ti7>=b0) * ("X""i°<=59) ///

> +4x(CY " Ti7-1)*(CX"71i°>=50)

>
3. if C2°>0 qui gen CI2_"i"=("Cl +region)*("Y "i“!=. & “X""i">=50 & “X""i"!=.) if region>0
4. %

. qui mvencode CI* , mv(0) o
. forvalues i=1(1)10 {

2. assert CI1_"i™>=0 & CI1_"i"<="C1~
3. if “C27>0 assert CI2_"i"==0 | (CI2_"i">'C1”~ & CI2_"i"<="C")
4.}

. local list_CVar ""
. forvalues i=1(1)"C~ {

2. qui gen double xh_"i"=0

3. foreach j of varlist CI* {

4. qui replace xh_"i“=xh_~i"+(*j =="i")
5.

6. local list_CVar “list_CVar”™ xh_"i~
7.}

. cap drop CIx*

. sum xhx
Variable Obs Mean Std. Dev. Min Max
xh_1 1,993 .0331159 .1789841 0 1
xh_2 1,993 .1680883 .3740385 0 1
xh_3 1,993 .3246362 .4694269 0 2
xh_4 1,993 .2604114 .4389693 0 1
xh_5 1,993 .0873056 .2823532 0 1
xh_6 1,993 .1716006 .3811 0 2
xh_7 1,993 .3236327 .4690506 0 2
xh_8 1,993 .3100853 .4626444 0 1
xh_9 1,993 .244857 .6267585 0 4
xh_10 1,993 .0546914 .3047801 0 3
xh_11 1,993 .0536879 .317855 0 4
xh_12 1,993 .0140492 .1479557 0 2
xh_13 1,993 .0331159 .2431949 0 2
xh_14 1,993 .1565479 .5326475 0 4
xh_15 1,993 .0280983 .2130606 0 2
xh_16 1,993 .1675866 .5339978 0 3
xh_17 1,993 .3692925 .7357074 0 3
xh_18 1,993 .0772704 .3668631 0 3
xh_19 1,993 .0145509 .1593442 0 2
xh_20 1,993 .1018565 .420558 0 3
xh_21 1,993 .0481686 .2898689 0 2
xh_22 1,993 .082288 .3871069 0 3
xh_23 1,993 .0541897 .3105795 0 3
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list hhidl gender_1 age_wl_1 /17

> gender_2 age_wl_2 ///
> gender_3 age_wl_3 ///
> gender_4 age_wil_4 ///
> xh_1-xh_8 11/
> region xh_9-xh_23 if hhid1=="DE-100831-A", noobs

hhidl | gender_1 | age_wl_1 | gender_2 age_wl_2 gender_3 age_wl_3 gender_4
DE-100831-A Female 58 Male 53 Female 86 Female

age_wl_4 | xh_1 | xh 2 | xh 3 | xh_ 4 | xh 5 | xh_ 6 | xh_ 7 xh_8 region xh_9 xh_10

76 0 0 0 1 1 1 0 1 1 4 0

xh_11 xh_12 xh_13 xh_14 xh_15 xh_16 xh_17 xh_18 xh_19 xh_20 xh_21 xh_22
0 0 0 0 0 0 0 0 0 0 0 0

xh_23

Now, we reproduce the calibrated cross-sectional household weights available in the SHARE database
using a logit specification of the distance function with lower bound [ = 0.95 and upper bound v = 5.
Notice that, to achieve convergence, we have to change the default starting values of the Lagrange
multipliers. The resulting weights my_wgt_hh coincide exactly with the calibrated cross-sectional

household weights cchw_wl available in the release 6.0.0 of the SHARE data.

* Compute calibrated weights (distance function: DS - case 6)
*
sreweight ~list_CVar~” if nowh!=1, 11/

> nweight (my_wgt_hh) sweight(dw_w1) ///
> total (${cc}_w${w}_P_MARG) /77
> dfunction(ds) upbound(5) lowbound(.95) /17
> niter(200)
Note: missing values encountered. Rows with missing values are not included in the calibration proce
> dure

Iteration 1
(output omitted )
Iteration 199
Iteration 200
Not Converged within the maximum number of iterations. Try to use the NTRIES option

31



matrix start=J(23,1,.1)

. sreweight “list_CVar® if nowh!=1, /77
> nweight (my_wgt_hh) sweight(dw_w1) ///
> total (${cc}_w${w}_P_MARG) ///
> dfunction(ds) upbound(5) lowbound(.95) /17
> niter(200) svalues(start)

Note: missing values encountered. Rows with missing values are not included in the calibration proce
> dure
Iteration 1
(output omitted )
Iteration 76 - Converged

Survey and calibrated totals

Variable Original New
xh_1 298619 946653
xh_2 1486411 2680171
xh_3 2902064 5051384
xh_4 2652226 4962760
xh_5 1034318 2501710
xh_6 1855672 3769107
xh_7 3013223 5387424
xh_8 2870268 4975022
xh_9 2290691 4411850

xh_10 573515 1207394
xh_11 495994 969617
xh_12 160828 257730
xh_13 338807 620420
xh_14 1420118 2222275
xh_15 318948 640323
xh_16 1563762 2930725
xh_17 3569874 6584773
xh_18 750026 1492760
xh_19 144163 413126
xh_20 956367 1779562
xh_21 477429 1018621
xh_22 740787 1067047
xh_23 515534 929271

Note: type-ds distance function used
Current bounds: upper=5 - lower=.95

. gen my_wgt_hh_f=(my_wgt_hh==.
. gen double hh=1
. table my_wgt_hh_f, c(count hh sum my_wgt_hh) row format(%9.0f)

my_wgt_hh
_f N(hh) sum(my_wgt-~h)
0 1,992 18753916
1 1 0
Total 1,993 18753916

. compare my_wgt_hh cchw_wl

difference
count minimum average maximum
my_wgt_hh=cchw_wl 1992
jointly defined 1992 0 0 0
jointly missing 1
total 1993

*
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3.5 Calibrated longitudinal individual weights

In this section we show how to reproduce the calibrated longitudinal individual weights (i.e. the
variable cliw b) for the balanced panel of respondents in a given country participating in all waves
of SHARE of a given wave span. We focus again on the German respondents in waves 1 and 2 by

setting the following macros

Lo
. * Select country (e.g. DE), initial wave (e.g. wl) and final wave (e.g. w2)

*

. global wi 1 // initial wave //

. global wf 2 // final wave //

. global cc "DE" // country label //

. global cc_num "12" // country number //

. global pop_time 2004 // reference year //

. global mort_time 2006 // final year //

. global w "1_"wi™_“wf™"

. global age_groups 4 // number of age groups

. global age_thr_low "80 70 60 50" // lower thresholds of age groups
. global age_thr_upp "89 79 69 59" // upper thresholds of age groups

*

The remainder of our code can be easily adapted to the other countries and waves by changing the
values of these macros. Next, we run the do-file CalMar to define the vector of calibration margins
for the population in the reference year that survives up to the final year. This is done in the do-file
CalMar by subtracting the number of deaths between initial and final year from the population in
the initial year.

For simplicity, in the computation of calibrated longitudinal weights we exclude regional infor-
mation about NUTS1 regions by setting the DE_w1_P_MARG vector equal to the vector DE_wl_P_SA.
This can be easily changed by commenting out the first command of the following code.

L ox
. * No NUTS1 for longitudinal weights
L ox
. matrix ${cc}_w${w}_P_MARG = ${cc}_w${w}_P_SA
. noi mat 1i ${cc}_w${w}_P_MARG

DE_wl_1_2_P_MARG[8,1]
POP
M-80+ 720789
M-70-79 2444070
M-60-69 4879081
M-50-59 4891028
F-80+ 1978719
F-70-79 3575138
F-60-69 5298005
F-50-59 4938152
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Again, the dimensions of these vectors are stored in a set of local macros because they correspond

to the number of calibration equations.

Number of calibration equations

* ¥ *

. mata: st_matrix("C1",rows(st_matrix("${cc}_w${w}_P_SA")))
. local C1 = C1[1,1]

. mata: st_matrix("C",rows(st_matrix("${cc}_w${w}_P_MARG")))
. local C = C[1,1]

. local C2 = "C~ - "C1~

. local nag = “C1°~ / 2

. assert “C1°==8
. assert ~C27==0

.k

Next we load the individual level longitudinal database and select the DE subsample:

)
. * Get local macros

*
*

. local wi ${wi} // initial wave //

. local wf ${wf} // initial wave //

. local cc ${ccr // country label //
. local cc_num ${cc_num} // country number //
. local w ${w}

Y
. * Load my SHARE dataset and select the country-data

.ok

. qui use mydata_long_ind, clear

. qui keep if country=="cc_num”

.k

Our set of calibration variables consists of age and gender. We need to ensure that calibrated weights
are missing when the calibration variables contain one missing values due to item nonresponse
(unless we impute these missing values), and for all respondents aged less than 50 years because
these persons do not belong to the target population of interest. Based on these criteria, we find

that calibrated weights will be missing for 30 observations.
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Calibration variables

* ¥ *

. sum age gender dw_w wi~

Variable Obs Mean Std. Dev. Min Max
age_wl 1,599 63.4459 9.098648 33 94
gender 1,599 1.543465 .4982631 1 2
dw_wl 1,599 4888.512 1738.689 1987.101 9525.167

*

Binary indicator for missing weights

* ¥ *

. qui gen nowi=(dw_wl==.|gender==.|age==.|age<50)

. noi tab nowi, mis

nowi Freq. Percent Cum.
0 1,569 98.12 98.12
1 30 1.88 100.00
Total 1,599 100.00

In the following code we define a set of binary indicators for our calibration variables. More
precisely, we generate the binary indicators xi_1-xi_8 for the 8 gender-age groups. This list of
these indicators is stored in the local macro 1ist_Cvar. In the following code, please note that
the local macro C2 is now equal to zero because we do not use the 15 NUTS1 regional areas as

additional calibration margins. Nonetheless, we keep the code as general as possible.

Binary indicators for calibration groups

* % *

. local t =1
forvalues ss=1(1)2 {

}

2. forvalues aa=1(1) nag~ {

3. local 1b = ${cc}_w${w}_P_AGE_THR[ aa”,1]

4. local ub = ${cc}_w${w}_P_AGE_THR[ aa”,2]

5. if "aa"==1 qui gen xi_"t =(age_w wi >="1b")*(age_w wi !=. )*(gender=="ss") if nowi!=1
6. else qui gen xi_"t =(age_w wi >="1b")*(age_w wi <="ub”)*(gender=="ss”) if nowi!=1
7. local t = "t~ + 1

8.

9.

}
forvalues i=1(1)"C2" {

N -

local i2 = "C1° + "i~
3. qui gen xi_"i2° = (region=="i" & age_w wi“>=50 & age_w wi“!=. & gender!=.) if nowi!=1
4.
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. list mergeid gender age_wl xi_1-xi_8 if _n<=b5, noobs

mergeid gender age_wl xi_1 xi_2 xi_3 xi_4 xi b xi_6 xi_ 7 xi_8

DE-000132-01  Female 51 0 0 0 0 0 0 0 1
DE-001381-01  Female 51 0 0 0 0 0 0 0 1
DE-002106-01 Male 74 0 1 0 0 0 0 0 0
DE-002106-02  Female 65 0 0 0 0 0 0 1 0
DE-002173-01 Male 68 0 0 1 0 0 0 0 0

At this stage we have everything we need for reproducing the SHARE calibrated longitudinal
weights. We compute these weights by using the sreweight command. Below we show the syntax
of this command using a logit specification of the distance function with lower bound ! = 0.01 and
upper bound u = 10. Again, we allowed the maximum number of iteration to go up to 200 by the
niter option. Note that the original design weights (the option sweight) are the design weights

of the wave when the longitudinal sample was originally selected (wave 1).

Compute calibrated weights (distance function: DS - case 6)

* ¥ *

. local list_CVar ""
. forvalues i=1(1)"C~ {

2. local list_CVar “list_CVar~™ xi_"i~

3.}

. sreweight “list_CVar~ if nowi!=1 & dw_wwi“!=., ///

> nweight (my_wgt) sweight(dw_w wi~) /17
> total(${cc}_w${w}_P_MARG) ///

> dfunction(ds) upbound(10) lowbound(.01) ///

> niter(200)

Note: missing values encountered. Rows with missing values are not included in the calibration procedure
Iteration 1
(output omitted )
Iteration 170
Iteration 171 - Converged

Survey and calibrated totals

Variable Original New
xi_1 105068 720789
xi_2 588938 2444070
xi_3 1453059 4879081
xi_4 1230270 4891028
xi_ b 459720 1978719
xi_6 808439 3575138
xi 7 1516538 5298005
xi_8 1418732 4938152

Note: type-ds distance function used
Current bounds: upper=10 - lower=.01

.ok

In this example, convergence required 171 iterations. The new calibrated weights are stored in the
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variable my_wgt and the associated vector of Lagrange multipliers is available in the output vector
r(1m). Below, we compare our calibrated longitudinal weights my_wgt with both the original design
weights dw_wl and the calibrated longitudinal weights cliw_b available in the release 6.0.0 of the
SHARE data.

Comparison between calibrated and design weights

LR I

. gen my_wgt_f=(my_wgt==.
. bysort hhid wi“: gen double hh=(_n==1)
. table my_wgt_f, c(count hh sum my_wgt) row format(%9.0f)

my_wgt_f N(hh) sum(my_wgt)
0 1,569 28724982

1 30 0

Total 1,599 28724982

. noi compare my_wgt cliw_b

difference
count minimum average maximum
my_wgt=cliw_b 1569
jointly defined 1569 0 0 0
jointly missing 30
total 1599
. twoway /17
>  (kdensity dw_w'wi”~ , lc(blue) 1lp(solid)) ///
> (kdensity my_wgt, lc(red) 1p(-) ) ///
>, /17
> ytitle(density) xtitle(weights) graphr(c(white)) ///
>  legend( ///
> order ( ///
> 1 "design wgt" ///
> 2 "calibrated wgt" /17
> ) /17
> row(2) col(3) symxsize(5) rowg(*.4) ///
> region(lc(white)) position(1l) ring(0) ///
> )

Notice that the calibrated weights my_wgt coincide exactly with the calibrated weights cliw_b
available in the SHARE data. These weights contains 30 missing values and 1,569 non-missing
observations. The sum over all sample units matches exactly the size of the target population.
Figure 7 shows a kernel density of the design and the calibrated weights. Again, as expected,

calibrated weights are greater than the design weights.
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3.6 Calibrated longitudinal household weights

Finally, we consider calibrated longitudinal household weights clhw b. Like the cross-sectional
case, the main difference with respect to the calibrated individual weights is that each household
member must receive an identical calibrated weight that depends on the household design weight
and the vectors of calibration variables of all 50+ household members. The setting of the macros to
select the country, the initial and the final wave, as well as the specification of calibration margins,

defined at the individual level, is similar to the previous section.

Select country (e.g. DE), initial wave (e.g. wl) and final wave (e.g. w2)

LR I

. global wi 1 // initial wave //

. global wf 2 // final wave //

. global cc "DE" // country label //

. global cc_num "12" // country number //

. global pop_time 2004 // reference year //

. global mort_time 2006 // final year //

. global w "1_"wi"_“wf™"

. global age_groups 4 // number of age groups

. global age_thr_low "80 70 60 50" // lower thresholds of age groups
. global age_thr_upp "89 79 69 59" // upper thresholds of age groups

L%
. * Run CalMar.do

. run CalMar.do
(output omitted )

Number of calibration equations

*
. * No NUTS1 for longitudinal weights
. matrix ${cc}_w${w}_P_MARG = ${cc}_w${w}_P_SA

. noi mat 1i ${cc}_w${w}_P_MARG
(output omitted )
. mata: st_matrix("C1",rows(st_matrix("${cc}_w${w}_P_SA")))

. local C1 = C1[1,1]

. mata: st_matrix("C",rows(st_matrix("${cc}_w${w}_P_MARG")))
. local C = C[1,1]

. local C2 = °C~ - "C1~

. local nag = "C1°~ / 2

. assert ~“C17==8

. assert ~“C27==0

Load my SHARE dataset and select the country-data

* ¥ *

. qui use mydata_long_hhs, clear
. qui keep if country=="cc_num~”

*

In the household level data, the binary indicator for missing calibrated weights is equal to 1 if
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the design weight dw_wl is missing or there exist no household member aged 50 years or older at
the time of the wave 1 interview. We find that calibrated longitudinal household weights will be

missing for 29 household.

Binary indicator for missing weights

LR

. gen n_elig w wi =0

. forvalues i=1(1)10 {
2. replace n_elig w'wi” = n_elig wwi~ +(age_w wi _"i">=50 & age_w wi"_"i7!=.)

3.}
. gen nowh = (dw_w wi ==.|n_elig_w wi ==0)

. noi tab nowh, mis

nowh Freq. Percent Cum.
0 1,090 97.41 97.41
1 29 2.59 100.00
Total 1,119 100.00

*

Then, we generate a set of variables (i.e. the variables xh_1-xh_8) counting the number of household
members that belong to each gender-age class calibration group. The set of calibration variables
is stored in the macro 1list_Cvar. As before, we keep the code as general as possible, although in
this example the local macro C2 is equal to zero because we do not use the NUTS1 regional areas

as additional calibration margins.

Indicators for calibration groups

* ¥ *

. local X="age_w wi _"

n

. local Y="gender_
. local list_CVar ""
. local t =1

. forvalues ss=1(1)2 {

2. forvalues aa=1(1) nag” {

3 gen xh_"t” =0

4. local list_CVar “list_CVar”™ xh_"t~

5. local 1b = ${cc}_w${w}_P_AGE_THR[ aa”,1]
6 local ub = ${cc}_w${w}_P_AGE_THR[ aa~”,2]
7 forvalues i=1(1)10 {

8

. if “aa”==1 replace xh_"t~ = xh_"t~ + (CX7i>="1b")*(CX i !1=)*(CY "i"=="ss"))
9. else replace xh_"t~ = xh_"t~ + (CX"i>="1b )*(X "i'<="ub )*("Y "i =="ss7))
10. }
11. local t = "t~ + 1
12. }
13.}
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. forvalues r=1(1)"C2" {
gen xh_"t~ =0

2. local list_CVar “list_CVar” xh_"t~
3. forvalues i=1(1)10 {
4. replace xh_"t~ = xh_"t~ + (region=="r" & Y "i“l=. & "X"7i">=50 & "X""i"!=.) if region>0
5. }
6. local t = "t~ + 1
7.}
. sum xh*
Variable Obs Mean Std. Dev. Min Max
xh_1 1,119 .0330652 .1788869 0 1
xh_2 1,119 .1599643 .3667368 0 1
xh_3 1,119 .3458445 .4758555 0 1
xh_4 1,119 .2689902 .4436331 0 1
xh_5 1,119 .0866845 .281498 0 1
xh_6 1,119 .1483467 .3605978 0 2
xh_7 1,119 .3547811 .4805259 0 2
xh_8 1,119 .3252904 .4686927 0 1
. list hhidl gender_1 age_w wi’_1 ///
> gender_2 age_w wi~_2 /17
> gender_3 age_w wi _3 11/
> gender_4 age_w wi’_4 ///
> xh_1-xh_8 11/
> if hhid1=="DE-100831-A", noobs
hhidil gender_1 age_wl_1 gender_2 age_wl_2 | gender_3 | age_wl_3 | gender_4
DE-100831-A Female 58 Male 53 Female 86 Female
age_wl_4 xh_1 xh_2 xh_3 xh_4 xh_5 xh_6 xh_7 xh_8
76 0 0 0 1 1 1 0 1

Now, we are ready to compute the calibrated individual household weights available in the SHARE
database using a logit specification of the distance function with lower bound ! = 0.5 and upper
bound v = 15. Up to 152 iterations are needed to achieve convergence. The resulting weights
my_wgt_hh are exactly equal to the calibrated longitudinal household weights clhw_b available in
the release 6.0.0 of the SHARE data.

Compute calibrated weights (distance function: DS - case 6)

* % ¥

sreweight “list_CVar~ if nowh!=1, /17
> nweight (my_wgt_hh) sweight (dw_w wi~) ///
> total (${cc}_w${w}_P_MARG) 11/
> dfunction(ds) upbound(15) lowbound(.5) ///
> niter(200)
Note: missing values encountered. Rows with missing values are not included in the calibration proce
> dure
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Iteration 1
(output omitted )
Iteration 152 - Converged

Survey and calibrated totals

Variable Original New
xh_1 136073 720789
xh_2 715785 2444070
xh_3 1690376 4879081
xh_4 1458319 4891028
xh_5 516020 1978719
xh_6 861385 3575138
xh_7 1787257 5298005
xh_8 1658252 4938152

Note: type-ds distance function used
Current bounds: upper=15 - lower=.5

.k

. * Comparison between calibrated and design weights

. gen my_wgt_hh_f=(my_wgt_hh==.
. gen double hh=1

. table my_wgt_hh_f, c(count hh sum my_wgt_hh) row format(%9.0f)

my_wgt_hh
_f N(hh) sum(my_wgt~h)
0 1,090 16895749
1 29 0
Total 1,119 16895749

. noi compare my_wgt_hh clhw_b

— difference

count minimum average maximum

my_wgt_hh=clhw_b 1090

jointly defined 1090 0 0 0
jointly missing 29

total 1119

4 Conclusions

In this report we have provided an overview of the Stata programs available to compute calibrated
weights that account for problems of unit nonresponse in cross-sectional surveys and problems of
attrition in longitudinal surveys. The intuitive idea of the calibration approach is to adjust the
original design weights of respondents to compensate for their systematic differences relative to
nonrespondents. In addition to the orginal design weights, this type of adjustment requires ad-

ditional information on the target population that is typically available from either the sampling
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frame or other external sources such as census data and administrative archives. Given such infor-
mation, calibrated weights can be computed easily through the sreweight command implemented
by Pacifico (2014), which is fast and includes several options for controlling the key features of the
underlying optimization problem. In this report, we have illustrated the use of this Stata command
by providing a variety of examples in the context of the SHARE data. Our Stata do-files can be
easily extended to compute either calibrated cross-sectional weights with other types of calibration
margins or calibrated longitudinal weights for different wave combinations. The same approach
can be also be extended to other sample surveys such as the European Social Survey (ESS) and

the Gender and Generations Program (GGP).
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Figure 2: Ratio between calibrated and design weights
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Figure 3: Calibrated weights with alternative bounds in the logit distance function
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Figure 4: Ratio between calibrated weights with alternative bounds in the logit distance function
and design weights
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Figure 5: Calibrated weights with alternative specifications of the distance function
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Figure 6: Ratio between calibrated and design weights with alternative specifications of the distance
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Figure 7: Design weights and calibrated longitudinal weights
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